Q5, January 2018

 $V = P_3(C) = \{polynomials of degree at most 3 with coefficients in C\}$ Find the Jordan Canonical Form of the linear operator T defined by T(f) = f + f".

 $V = \text{span}_C\{1, x, x^2, x^3\}$ A is the matrix of T with respect to the basis $\{1, x, x^2, x^3\}$.

$$A = \begin{pmatrix} 1 & 0 & \lambda & 0 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Strategy:

Find the Smith Normal Form of xI - A. Call it SNF(xI - A). The Smith Normal Form is a diagonal matrix whose diagonal entries satisfy d_1 | d_2 | ... | d_n. The non-constant diagonal entries are called the invariant factors of A. The largest invariant factor d_n is the minimal polynomial of A. The product of all invariant factors of A is the characteristic polynomial of A.

How does one find the Smith Normal Form of xI - A?

We are allowed to use elementary row and column operations.

- We may take any pair of rows (or columns) and interchange them, e.g., $R_i \leftrightarrow R_j$.
- We may take any multiple of a row (or column) and add (or subtract) it to another row (or column), replacing that row (or column) by the new quantity, e.g., $\mathbb{C} \mathbb{R}_{\frac{1}{2}} + \mathbb{R}_{\frac{1}{2}} \mapsto \mathbb{R}_{\frac{1}{2}}$.

$$xI - A = \begin{pmatrix} x - | & 0 & -x & 0 \\ 0 & x - | & 0 & -6 \\ 0 & 0 & x - | & 0 \\ 0 & 0 & 0 & x - | \end{pmatrix} \qquad \begin{cases} x - | & x - | \\ x - | & 0 & x - | \\ 0 & -6 & 0 & x - | \\ 0 & 0 & 0 & x - | \end{cases} \qquad \begin{cases} x - | & x - | & x - | \\ x - | & 0 & 0 \\ x$$

invariant factors: $(x - 1)^2$ and $(x - 1)^2$ minimal polynomial: $(x - 1)^2$ (the largest invariant factor) characteristic polynomial: $(x - 1)^2$ $(x - 1)^2$

$$SNF(xI - A) = \begin{pmatrix} 1 & 0 \\ 0 & (x-1)^{\lambda} \end{pmatrix}$$

For the Rational Canonical Form, we need the invariant factors.

$$RCE(A) = \begin{bmatrix} C_{(x-1)^{\lambda}} & & C_{(x-1)^{\lambda}} \\ C_{(x-1)^{\lambda}} & & C_{(x-1)^{\lambda}} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & \lambda & 0 & 0 \\ 0 & 0 & 1 & \lambda \end{bmatrix}$$

RCF(A) = direct sum of companion matrices of invariant factors of A

$$C_{4(x)} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -\alpha_{0} \\ 0 & 0 & 0 & \cdots & 0 & -\alpha_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & -\alpha_{n-1} \end{pmatrix} f(x) = x^{n} + \sum_{i=0}^{n-1} c_{i} x^{i}$$

For the Jordan Canonical Form, we need the elementary divisors.

In general, the elementary divisors are found from the non-constant invariant factors. Explicitly, for $d_i(x) = p_1(x)^{e_1} \dots p_k(x)^{e_k}$, the elementary divisors are the $p_j(x)^{e_j}$.

$$d_3(x) = (x-1)^3$$
 — elementary divisor $d_4(x) = (x-1)^3$ — elementary divisor

$$d(x) = (x - 1)(x + 2)(x + 3)^2$$

$$d(x) = (x^2 - 4)(x^2 + 1)$$

elementary divisors: x - 1, x + 2, $(x + 3)^2$

elementary divisors: x - 2, x + 2, $x^2 + 1$

If the field over which the vector space is defined is algebraically closed, then $x^2 + 1 = (x - 1)$ i)(x + i), hence the elementary divisors are x - 2, x + 2, x - i, x + i.

$$J_{(x-c)}^{k} = \begin{pmatrix} a \\ b \end{pmatrix} = aT + \text{matrix of 1s on the superdiagonal, 0s elsewhere}$$